Improved Part-of-Speech Prediction in Suffix Analysis

نویسندگان

  • Mario Fruzangohar
  • Trent A. Kroeger
  • David L. Adelson
چکیده

MOTIVATION Predicting the part of speech (POS) tag of an unknown word in a sentence is a significant challenge. This is particularly difficult in biomedicine, where POS tags serve as an input to training sophisticated literature summarization techniques, such as those based on Hidden Markov Models (HMM). Different approaches have been taken to deal with the POS tagger challenge, but with one exception--the TnT POS tagger--previous publications on POS tagging have omitted details of the suffix analysis used for handling unknown words. The suffix of an English word is a strong predictor of a POS tag for that word. As a pre-requisite for an accurate HMM POS tagger for biomedical publications, we present an efficient suffix prediction method for integration into a POS tagger. RESULTS We have implemented a fully functional HMM POS tagger using experimentally optimised suffix based prediction. Our simple suffix analysis method, significantly outperformed the probability interpolation based TnT method. We have also shown how important suffix analysis can be for probability estimation of a known word (in the training corpus) with an unseen POS tag; a common scenario with a small training corpus. We then integrated this simple method in our POS tagger and determined an optimised parameter set for both methods, which can help developers to optimise their current algorithm, based on our results. We also introduce the concept of counting methods in maximum likelihood estimation for the first time and show how counting methods can affect the prediction result. Finally, we describe how machine-learning techniques were applied to identify words, for which prediction of POS tags were always incorrect and propose a method to handle words of this type. AVAILABILITY AND IMPLEMENTATION Java source code, binaries and setup instructions are freely available at http://genomes.sapac.edu.au/text_mining/pos_tagger.zip.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Types of Inner Speech in the Prediction of Symptoms of Anxiety, Depression, Somatization, and Distress in the Normal Population

Objective: It is extremely common for adults to use inner speech to regulate their behavior. Despite this, little is known about the underlying processes that may explain why people use inner speech differently. This study aimed to determine the relationship between different types of inner speech with symptoms of anxiety, depression, somatization, and distress in normal people. Methods: The r...

متن کامل

Design and Implementation of an Intelligent Part of Speech Generator

The aim of this paper is to report on an attempt to design and implement an intelligent system capable of generating the correct part of speech for a given sentence while the sentence is totally new to the system and not stored in any database available to the system. It follows the same steps a normal individual does to provide the correct parts of speech using a natural language processor. It...

متن کامل

Suffix interference in the recall of linguistically coherent speech.

Four experiments are presented that address the stimulus suffix effect for linguistically coherent spoken materials. In Experiment 1, definitions of low-frequency words were presented for online written recall. Each definition was followed by a nonword speech suffix presented in the same voice as the definition, the same nonword presented in a different voice, or a tone. The results yielded a s...

متن کامل

سیستم برچسب گذاری اجزای واژگانی کلام در زبان فارسی

Abstract: Part-Of-Speech (POS) tagging is essential work for many models and methods in other areas in natural language processing such as machine translation, spell checker, text-to-speech, automatic speech recognition, etc. So far, high accurate POS taggers have been created in many languages. In this paper, we focus on POS tagging in the Persian language. Because of problems in Persian POS t...

متن کامل

Skip Context Tree Switching

Context Tree Weighting is a powerful probabilistic sequence prediction technique that efficiently performs Bayesian model averaging over the class of all prediction suffix trees of bounded depth. In this paper we show how to generalize this technique to the class of K-skip prediction suffix trees. Contrary to regular prediction suffix trees,K-skip prediction suffix trees are permitted to ignore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013